无刷直流电机的工作原理

无刷直流电机的工作原理

无刷直流电机原理

磁铁固定在转子上,而定子则缠绕在指定数量的磁极上。 通过使用电子换向器,电流在定子磁极周围反向。 如图1所示,这将在定子中建立一个旋转磁场,转子磁铁将跟随该旋转磁场,从而使转子旋转。它实际上是一台同步电机,转子速度由定子线圈之间的换向频率控制。

图1:无刷直流电机类型

 

定子线圈的数量将是3的倍数,并且将串联或并联互连以形成三组A,B和C。

优点:

与有刷直流电机相比,无刷电机有以下几个优点:

  • 更高的扭矩重量比
  • 更多扭矩/瓦(提高效率)
  • 更高的可靠性,更低的噪声,更长的使用寿命(无电刷和换向器腐蚀),以及消除了换向器产生的电离火花。
  • 在转子上没有绕组的情况下,它们不会受到离心力的影响,因此可以实现非常高速的设计。
  • 由于绕组由壳体组成,因此可以通过传导进行冷却,而无需在电机内部进行气流冷却,这又意味着可以将电机的内部完全封闭,并防止灰尘或其他异物进入。

 

变化:图1(a)显示了一种类型的无刷直流电机,称为内转子设计或流道设计,其中转子在内部,定子在外部。 图1(b)中显示了一种变化形式,称为外转子设计或外转子设计。 在此,转子在外部,定子在内部。

2.无刷电机的驱动

无刷直流电机没有电子控制器是不能运行的。它可以通过定子线圈对电流进行换向,并可用于提供速度控制。图2是这种控制器的简化电路图。

图2:使用霍尔效应传感器的无刷直流电机控制器

 

 

图2显示了实质上是一个三相逆变桥,它使用IGBT作为半导体开关器件。 出于成本和性能方面的原因,较小的低压电机控制器更可能使用MOSFET。

3.无刷直流电机无传感器控制

电机绕组之间的输出电流换向由霍尔传感器反馈中的转换控制。 可以看出,这大约对应于反电动势波形之一中的零交叉点。 因此,有可能通过监视这些反电动势来检测换向点。 这使得在某些电机和应用中可以消除霍尔传感器和辅助磁体。 这简化并降低了电机的成本。 图3显示了无传感器BLDCM控制方案的框图。

图3:无传感器无刷直流电机控制器

 

过零点通常不同于理想的换向点,因此控制器需要对此进行补偿。 在低速下,反电动势 幅值非常低,因此无法测量,因此电机需要开环运行。 因此,无传感器控制不适用于具有高动态性能或低速和高转矩的应用。

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

相关推荐

电枢磁通对主磁场磁通的影响被称为“电枢反应”,电枢反应会会引起磁场分布的变化,进而影响电机的运行。
电火花加工适用于各种导电材料,并克服了数控铣削和车削等传统方法的局限性,尤其在高精度加工和复杂型腔制造方面具有显著优势。
“压敏电阻”是具有非线性伏安特性的电阻装置,它主要用于电路承受过压并吸收多余电流以保护敏感器件时的电压钳位。
在直流电机中,在电枢的两端产生的电压在直流电机中称为反电磁场, 反向电磁场始终与电源电压相反。 为了使直流电机的电枢保持旋转,电源电压必须迫使电流流过电枢绕组以反转电磁场。
交流电机和直流电机的原理相同,都是利用电枢绕组和磁场,不同之处在于,直流电机的电枢旋转,而磁场不旋转。交流电机的电枢不旋转,而磁场持续旋转。
齿轮电机的主要优势在于扭矩输出的显著提升,通过变速箱减速,电机能够在降低转速的同时提供更强的驱动力,适用于各类重载应用场景。

询盘表单