直流电机 VS 伺服电机

直流电机 VS 伺服电机

无刷直流电机在速度控制领域中正变得越来越受欢迎。然而,并不是每个人都对无刷直流电机的功率和性价比方面有所了解。即使在其性能已被实际应用验证的情况下,无刷直流电机仍常被排在两大主流方案之后——逆变器驱动的三相电机和伺服电机。本文将介绍无刷直流电机的主要特点,并探讨在选择紧凑型速度控制电机时应重点关注的几个关键因素。

直流电机

直流电机是两线制(电源和接地)连续旋转电机。 当您供电时,直流电机将开始旋转,直到断开电源为止。 大多数直流电机都以较高的RPM(每分钟转数)运行,例如计算机冷却风扇或无线电控制的车轮。

直流电机的速度是通过脉宽调制(PWM)来控制的,脉宽调制是一种快速对电源进行开和关的技术。 循环开/关比所花费的时间百分比决定了电机的速度。 例如,如果电源以50%循环(一半打开,一半关闭),则电机将以100%的一半速度旋转(完全打开)。 每个脉冲是如此之快,以至于电机似乎连续旋转而没有卡死现象。

 

伺服电机

伺服电机通常由四部分组成:直流电机,齿轮组,控制电路和位置传感器。

伺服电机的位置可以比标准直流电机更精确地控制,它们通常具有三根电线(电源,接地线和控制线)。 伺服电机始终处于通电状态,伺服控制电路调节驱动电机的牵引力。 伺服电机设计用于需要精确定义位置的更具体的任务,例如控制船舵或在一定范围内移动机械臂或机器人腿。

伺服电机不能像标准直流电机那样自由旋转。 而是将旋转角度来回限制为180度(左右)。 伺服电机接收代表输出位置的控制信号,并向直流电机供电,直到轴转到由位置传感器确定的正确位置为止。

PWM用于伺服电机的控制信号。 但是,与直流电机不同,正脉冲的持续时间决定了伺服轴的位置,而不是速度。 取决于伺服的中性脉冲值(通常在1.5ms左右)将伺服轴保持在中心位置。 增加该脉冲值将使伺服器顺时针旋转,而较短的脉冲将使轴逆时针旋转。 伺服控制脉冲通常每20毫秒重复一次,本质上告诉伺服去向,即使那意味着保持在同一位置。

当命令伺服系统移动时,即使外力对其施加压力,它也会移动到该位置并保持该位置。 伺服器将阻止其移出该位置,而伺服器可施加的最大阻力是该伺服器的额定扭矩。

 

总结

这是一个复杂且有点争议的领域的简要概述(尤其是关于进步VS伺服的优缺点),但希望它可以帮助您根据自己的驾驶需求做出更明智的选择!

  • 直流电机快速,连续旋转马达-用于任何需要以高转速旋转的东西,如汽车车轮,风扇等。
  • 伺服电机快速,高扭矩,在有限角度内精确旋转-通常是步进电机的高性能替代,但更复杂的设置PWM调整。它适用于机械臂/腿或舵控制。
发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

相关推荐

温度过高会导致电机绕组绝缘层快速老化,影响电机的寿命和安全可靠运行,严重时会对系统造成危害,造成电机异常停机。
火花的产生可能由多种因素引起,如电压波动、电刷磨损、接触不良及过载运行等,这些因素都可能在电机内部引发剧烈变化,形成电弧,进而产生火花。
选择减速电机时需要考虑许多因素。无论您计划购买预制齿轮马达,还是单独选择齿轮箱和电动机,了解各种应用需求对于找到完美匹配至关重要。
电机电刷损坏的最明显症状包括性能下降、功率损失、产生火花以及烧焦的气味。确定刷子是否需要更换的最佳方法是拆下旧电刷,检查其磨损程度是否已超过“自动切断”线。
在采购电机时,我们需要了解的关键信息之一是电机的外壳。外壳在电机中扮演关键角色,不仅充当保护罩,还能保护电机免受环境因素的影响。
无刷直流电机的结构和组件(包括定子、转子和永磁体)是确保其高效可靠运行的关键要素。通过了解这些组件,工程师可以设计和优化 BLDC 电机,以用于从汽车系统到航空航天技术等各种应用,为机电工程的持续进步铺平道路。

询盘表单